

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

High Bit Security Finding Report

Finding reports are delivered by High Bit Security at various intervals during the course of penetration
testing. They are provided for your convenience and early notification. The numeric ordering of these
reports reflects the order in which vulnerabilities were discovered. There is no relationship between
report numbers and vulnerability severity.

Additional information about the vulnerability may be available on the final report, and severity levels may
change if our penetration testers discover additional information or find other vulnerabilities which
increase the risk.

NOTE: This is a sample finding report for visualization purposes. It is based on an
actual finding delivered to a client. Sensitive information has been redacted.

It demonstrates our finding documentation and the typical amount of manual effort we
will use in validating a probable fault - we take it to the extent required to prove that the

vulnerability exists and requires remediation, without risking system stability or
exposing sensitive information more than necessary.

 Finding Details

Finding: Blind SQL Injection
Category: Input Sanitation

Severity: Critical

Target(s): REDACTED/cgi-bin/REDACTEDloginadmin.exe?

Description: The application uses untrusted, unsanitized user provided data in the
construction of SQL statements.

Blind SQL injection is identical to normal SQL Injection except that there is no
useful error message or other data returned by the application. This makes
exploiting a potential SQL Injection attack more difficult, but not impossible. If
an attacker can reliably cause any change in the application response behavior,
attacks can enumerate data by asking a series of True and False questions
through SQL statements and observing the responses. One of the most common
methods for doing this is the injection of time delay statements that execute
when a tested statement is true, but do not execute when a tested statement is
false. Another common method is response negation. In this case, the injected
statement causes the application to return no data where it would normally return
something. Again, the result is the ability to systematically query the database
using 'Binary', or True/False queries.

In the worst case, the attacker can use this weakness to invoke special stored
procedures in the database that enable a complete takeover of the database and
possibly even the server hosting the database. In lesser cases, the attacker can
insert data into the database, enumerate database structure or retrieve data that
would otherwise be disallowed by access controls.

CONFIDENTIAL-SENSITIVE Page 1
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

Remediation: Ensure that all input is sanitized before inclusion in SQL statements. A good
starting point for information on how to do this for various languages and
platforms can be found at
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project and
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Guide_to_SQL_Injection.

Test Notes: This host and it's database is at immediate risk and the issue requires
remediation. The injection fault is reachable without credentials, and the
application itself is reachable without knowing anything more than the host
IP address. The potential damage is very high, the vulnerability easily
discovered and the exploit requires skills that, while not trivial, are
becoming widespread the hacker community.

The application does not transmit SQL error messages or data directly, but data
can be retrieved using injection methods that are crafted to produce a delay in
response. Here is the proof of concept test, with the payload highlighted:

POST /cgi-bin/REDACTEDloginadmin.exe? HTTP/1.1
Host: REDACTED
Connection: keep-alive
Referer: https://REDACTED/cgi-bin/REDACTEDloginpage.exe?
Content-Length: 80
Cache-Control: max-age=0
Origin: https://REDACTED
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1
(KHTML, like Gecko) Chrome/13.0.782.112 Safari/535.1
Content-Type: application/x-www-form-urlencoded
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
Cookie: REDACTEDlocation=https
%3A//REDACTED/cgi-bin/REDACTEDloginpage.exe%3F;
LOGINSERVER=REDACTED

UserName=nonesuch'waitfor
%20delay'0%3a0%3a02'--&Password=nonesuch&Submit=+Login+

The payload is url encoded, and decodes as:
'waitfor delay'0:0:02'--

All of the exploit steps shown in the following screen captures use the same
delay concept to extract data from the database.

Screen Captures:

First, a template was created for Blind SQL Injection, using a time delay to determine when the
correct length of the active database user name was passed:

CONFIDENTIAL-SENSITIVE Page 2
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

Then, the tool connection timeout value was set to less than the injected delay. Then an
attack was started, using the template with integers from 1-30 as the payload. If the application is
really vulnerable to Blind SQL Injection, then ONE and only one of the requests would time out –
the request carrying the integer payload that exactly matched the length of the current
database user:

CONFIDENTIAL-SENSITIVE Page 3
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

All payloads returned responses within the timeout setting, except for payload '3', meaning that
the current database user name is three characters long. Now that the length of the current db
user name is known, an attack can be crafted to enumerate the possible names.

CONFIDENTIAL-SENSITIVE Page 4
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

For this attack, we use two payloads, one to test possible characters, and one to test the
characters at specific positions.

The first payload is set to a numeric range from 1 to 3 since that's the known number of the
character positions in the db user name.

For the next payload, we use ASCII codes 48-126 which will test 0-9, A-Z, and a-z – no special
characters.

This yields a total of 237 requests to test all of the possible ascii codes for all three positions...

CONFIDENTIAL-SENSITIVE Page 5
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

After running the test and sorting the responses by length, we see that exactly three payload
responses timed out, and are able to determine from this that the current database user name is
'dba':

Position 1: acsii 100 = 'd'
Position 2: acsii 98 = 'b'
Position 3: ascii 97 = 'a'

While this may seem like a lot of effort to retrieve information that is of little value, remember that
this exercise was only a manual proof of concept, and the same procedure used here can be used
to extract any information from the database. An attacker, having identified the weakness, would
then automate further attacks by scripting, and would quickly determine the remaining database
schema, identify user or account related tables, and enumerate their contents using the same
techniques demonstrated here. At this point, no further testing was conducted, since the database
is clearly divulging sensitive information, remediation is required and further attacks would only
jeopardize system stability and expose information that we do not need to see.

CONFIDENTIAL-SENSITIVE Page 6
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

Appendix 1: Severity Levels

There are a number of commonly used schemes for rating vulnerability severity; however many of them
are rigid and do not consider context. While this has value, our own experience has shown that context
matters very much in rating the true significance of any security fault. Our ratings are therefore subject to
the context in which the fault is found and ultimately subject to the judgment of our security engineers.
Severity ratings reported here may differ from ratings on early finding reports due to our increased
knowledge and context of the application or system under test at the time of final report preparation.

High Bit Security uses 5 severity levels in reporting security faults:

CRITICAL
In the opinion of our security engineer, the fault puts the application or system at imminent and
substantial risk. These faults require immediate attention. These faults are severe and easily
discovered by attackers. They are immediately exploitable without combination with any other
fault, or may require combination with another fault that has already been observed in the
application or system under test. This rating also includes information disclosure where the
information itself is confidential or of very high value to an attacker. Examples of the latter include
password files, credit card data, source code disclosure or world readable or writable file
systems. These faults should receive top priority in remediation.

HIGH
Faults that, in the opinion of our security engineer could lead to compromise but are not easily
discovered, or require significant time or unusual skill to exploit, or are serious but more limited in
impact than a CRITICAL fault. These faults are immediately exploitable without combination with
any other fault, or require combination with another fault that has already been observed in the
application or system under test. These faults may include high value information disclosure if
the information is useful for successful exploitation of another HIGH or CRITICAL fault, such as
user account disclosure in combination with no account lockout, a condition that could lead to
successful brute force or dictionary attack. These faults should be corrected immediately.

MEDIUM
Faults that, in the opinion of our security engineer could lead to compromise, but are difficult to
detect, difficult to exploit, are limited in impact or require combination with at least one other fault
to be successfully exploited and no such fault has been observed. Also includes high value
information disclosure such as stack traces, configuration files, platform error messages, etc.
Also, any fault that we know requires remediation for PCI compliance will receive this rating as a
minimum. While more severe faults should be corrected first, these are still dangerous faults and
should be corrected as soon as possible.

LOW
Faults that, in the opinion of our security engineer could aid in developing other attacks, or faults
that if exploited would have limited impact. These faults also include information disclosure that
may be helpful to an attacker but is of relatively low perceived value. While the relative value to
an attacker is considered low, these are still security faults and should be corrected. They often
lack only the existence of another fault, a newly discovered exploit, or an application, system or
firewall change to take on greater significance.

INFORMATIONAL
This severity level is used when our security engineer obtains results that you should know
about, but may or may not represent any specific security issue. This severity level is often used
when our security engineer must rely on your judgment, for example: when unsecured content or
functionality is found, but the security engineer does not know and cannot determine by its
nature if it should be (or if you intended it to be) restricted by access controls. You should
carefully review all such findings and take corrective action if appropriate.

CONFIDENTIAL-SENSITIVE Page 7
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

High Bit Security, LLC, PO Box 533, Port Sanilac MI, 48469

Appendix 2: Severity Levels and PCI Compliance

There is no mandated vulnerability rating system for PCI-DSS compliance penetration testing, however
High Bit Security rates all faults that are known to require remediation under PCI-DSS to at least a
MEDIUM. Therefore, at a minimum you should plan to correct all MEDIUM and higher faults, and High Bit
Security recommends that all faults be corrected.

Before formulating a remediation plan, you should consult with your QSA. Your auditor knows your
network, systems and applications and thus has an inside perspective that our security engineers do not
have when testing for and rating faults. For this reason, faults that we rate as LOW or INFORMATIONAL
may be of higher significance to your auditor.

CONFIDENTIAL-SENSITIVE Page 8
This document contains proprietary and confidential information of a highly sensitive nature. Reproduction or

distribution without the express written permission of High Bit Security, LLC or the Client named above is strictly
prohibited.

